3.2180 \(\int \frac{(2+3 x)^6}{(1-2 x)^{5/2} (3+5 x)^2} \, dx\)

Optimal. Leaf size=140 \[ \frac{7 (3 x+2)^5}{33 (1-2 x)^{3/2} (5 x+3)}-\frac{38 (3 x+2)^4}{1815 \sqrt{1-2 x} (5 x+3)}-\frac{10283 (3 x+2)^3}{6655 \sqrt{1-2 x}}-\frac{463344 \sqrt{1-2 x} (3 x+2)^2}{166375}-\frac{21 \sqrt{1-2 x} (1544625 x+4633904)}{831875}-\frac{406 \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )}{831875 \sqrt{55}} \]

[Out]

(-463344*Sqrt[1 - 2*x]*(2 + 3*x)^2)/166375 - (10283*(2 + 3*x)^3)/(6655*Sqrt[1 - 2*x]) - (38*(2 + 3*x)^4)/(1815
*Sqrt[1 - 2*x]*(3 + 5*x)) + (7*(2 + 3*x)^5)/(33*(1 - 2*x)^(3/2)*(3 + 5*x)) - (21*Sqrt[1 - 2*x]*(4633904 + 1544
625*x))/831875 - (406*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/(831875*Sqrt[55])

________________________________________________________________________________________

Rubi [A]  time = 0.0535995, antiderivative size = 140, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.292, Rules used = {98, 149, 150, 153, 147, 63, 206} \[ \frac{7 (3 x+2)^5}{33 (1-2 x)^{3/2} (5 x+3)}-\frac{38 (3 x+2)^4}{1815 \sqrt{1-2 x} (5 x+3)}-\frac{10283 (3 x+2)^3}{6655 \sqrt{1-2 x}}-\frac{463344 \sqrt{1-2 x} (3 x+2)^2}{166375}-\frac{21 \sqrt{1-2 x} (1544625 x+4633904)}{831875}-\frac{406 \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )}{831875 \sqrt{55}} \]

Antiderivative was successfully verified.

[In]

Int[(2 + 3*x)^6/((1 - 2*x)^(5/2)*(3 + 5*x)^2),x]

[Out]

(-463344*Sqrt[1 - 2*x]*(2 + 3*x)^2)/166375 - (10283*(2 + 3*x)^3)/(6655*Sqrt[1 - 2*x]) - (38*(2 + 3*x)^4)/(1815
*Sqrt[1 - 2*x]*(3 + 5*x)) + (7*(2 + 3*x)^5)/(33*(1 - 2*x)^(3/2)*(3 + 5*x)) - (21*Sqrt[1 - 2*x]*(4633904 + 1544
625*x))/831875 - (406*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/(831875*Sqrt[55])

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 149

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[m]

Rule 150

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 153

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegerQ[m]

Rule 147

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol]
:> -Simp[((a*d*f*h*(n + 2) + b*c*f*h*(m + 2) - b*d*(f*g + e*h)*(m + n + 3) - b*d*f*h*(m + n + 2)*x)*(a + b*x)^
(m + 1)*(c + d*x)^(n + 1))/(b^2*d^2*(m + n + 2)*(m + n + 3)), x] + Dist[(a^2*d^2*f*h*(n + 1)*(n + 2) + a*b*d*(
n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m + 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1)*
(m + n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d^2*(m + n + 2)*(m + n + 3)), Int[(a + b*x)^m*(c + d*x)^n
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && NeQ[m + n + 2, 0] && NeQ[m + n + 3, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(2+3 x)^6}{(1-2 x)^{5/2} (3+5 x)^2} \, dx &=\frac{7 (2+3 x)^5}{33 (1-2 x)^{3/2} (3+5 x)}-\frac{1}{33} \int \frac{(2+3 x)^4 (239+411 x)}{(1-2 x)^{3/2} (3+5 x)^2} \, dx\\ &=-\frac{38 (2+3 x)^4}{1815 \sqrt{1-2 x} (3+5 x)}+\frac{7 (2+3 x)^5}{33 (1-2 x)^{3/2} (3+5 x)}-\frac{\int \frac{(2+3 x)^3 (8358+14133 x)}{(1-2 x)^{3/2} (3+5 x)} \, dx}{1815}\\ &=-\frac{10283 (2+3 x)^3}{6655 \sqrt{1-2 x}}-\frac{38 (2+3 x)^4}{1815 \sqrt{1-2 x} (3+5 x)}+\frac{7 (2+3 x)^5}{33 (1-2 x)^{3/2} (3+5 x)}-\frac{\int \frac{(-834141-1390032 x) (2+3 x)^2}{\sqrt{1-2 x} (3+5 x)} \, dx}{19965}\\ &=-\frac{463344 \sqrt{1-2 x} (2+3 x)^2}{166375}-\frac{10283 (2+3 x)^3}{6655 \sqrt{1-2 x}}-\frac{38 (2+3 x)^4}{1815 \sqrt{1-2 x} (3+5 x)}+\frac{7 (2+3 x)^5}{33 (1-2 x)^{3/2} (3+5 x)}+\frac{\int \frac{(2+3 x) (58387434+97311375 x)}{\sqrt{1-2 x} (3+5 x)} \, dx}{499125}\\ &=-\frac{463344 \sqrt{1-2 x} (2+3 x)^2}{166375}-\frac{10283 (2+3 x)^3}{6655 \sqrt{1-2 x}}-\frac{38 (2+3 x)^4}{1815 \sqrt{1-2 x} (3+5 x)}+\frac{7 (2+3 x)^5}{33 (1-2 x)^{3/2} (3+5 x)}-\frac{21 \sqrt{1-2 x} (4633904+1544625 x)}{831875}+\frac{203 \int \frac{1}{\sqrt{1-2 x} (3+5 x)} \, dx}{831875}\\ &=-\frac{463344 \sqrt{1-2 x} (2+3 x)^2}{166375}-\frac{10283 (2+3 x)^3}{6655 \sqrt{1-2 x}}-\frac{38 (2+3 x)^4}{1815 \sqrt{1-2 x} (3+5 x)}+\frac{7 (2+3 x)^5}{33 (1-2 x)^{3/2} (3+5 x)}-\frac{21 \sqrt{1-2 x} (4633904+1544625 x)}{831875}-\frac{203 \operatorname{Subst}\left (\int \frac{1}{\frac{11}{2}-\frac{5 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )}{831875}\\ &=-\frac{463344 \sqrt{1-2 x} (2+3 x)^2}{166375}-\frac{10283 (2+3 x)^3}{6655 \sqrt{1-2 x}}-\frac{38 (2+3 x)^4}{1815 \sqrt{1-2 x} (3+5 x)}+\frac{7 (2+3 x)^5}{33 (1-2 x)^{3/2} (3+5 x)}-\frac{21 \sqrt{1-2 x} (4633904+1544625 x)}{831875}-\frac{406 \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )}{831875 \sqrt{55}}\\ \end{align*}

Mathematica [C]  time = 0.0558326, size = 99, normalized size = 0.71 \[ -\frac{-252 \left (10 x^2+x-3\right ) \, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};\frac{5}{11} (1-2 x)\right )-266 (5 x+3) \, _2F_1\left (-\frac{3}{2},1;-\frac{1}{2};\frac{5}{11} (1-2 x)\right )+33 \left (1002375 x^5+6615675 x^4+36419625 x^3-52861545 x^2-19753541 x+14265224\right )}{1134375 (1-2 x)^{3/2} (5 x+3)} \]

Antiderivative was successfully verified.

[In]

Integrate[(2 + 3*x)^6/((1 - 2*x)^(5/2)*(3 + 5*x)^2),x]

[Out]

-(33*(14265224 - 19753541*x - 52861545*x^2 + 36419625*x^3 + 6615675*x^4 + 1002375*x^5) - 266*(3 + 5*x)*Hyperge
ometric2F1[-3/2, 1, -1/2, (5*(1 - 2*x))/11] - 252*(-3 + x + 10*x^2)*Hypergeometric2F1[-1/2, 1, 1/2, (5*(1 - 2*
x))/11])/(1134375*(1 - 2*x)^(3/2)*(3 + 5*x))

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 81, normalized size = 0.6 \begin{align*} -{\frac{729}{2000} \left ( 1-2\,x \right ) ^{{\frac{5}{2}}}}+{\frac{729}{125} \left ( 1-2\,x \right ) ^{{\frac{3}{2}}}}-{\frac{315171}{5000}\sqrt{1-2\,x}}+{\frac{117649}{5808} \left ( 1-2\,x \right ) ^{-{\frac{3}{2}}}}-{\frac{134456}{1331}{\frac{1}{\sqrt{1-2\,x}}}}+{\frac{2}{4159375}\sqrt{1-2\,x} \left ( -2\,x-{\frac{6}{5}} \right ) ^{-1}}-{\frac{406\,\sqrt{55}}{45753125}{\it Artanh} \left ({\frac{\sqrt{55}}{11}\sqrt{1-2\,x}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2+3*x)^6/(1-2*x)^(5/2)/(3+5*x)^2,x)

[Out]

-729/2000*(1-2*x)^(5/2)+729/125*(1-2*x)^(3/2)-315171/5000*(1-2*x)^(1/2)+117649/5808/(1-2*x)^(3/2)-134456/1331/
(1-2*x)^(1/2)+2/4159375*(1-2*x)^(1/2)/(-2*x-6/5)-406/45753125*arctanh(1/11*55^(1/2)*(1-2*x)^(1/2))*55^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.655, size = 136, normalized size = 0.97 \begin{align*} -\frac{729}{2000} \,{\left (-2 \, x + 1\right )}^{\frac{5}{2}} + \frac{729}{125} \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + \frac{203}{45753125} \, \sqrt{55} \log \left (-\frac{\sqrt{55} - 5 \, \sqrt{-2 \, x + 1}}{\sqrt{55} + 5 \, \sqrt{-2 \, x + 1}}\right ) - \frac{315171}{5000} \, \sqrt{-2 \, x + 1} - \frac{10084199952 \,{\left (2 \, x - 1\right )}^{2} + 48414664375 \, x - 19758729375}{19965000 \,{\left (5 \,{\left (-2 \, x + 1\right )}^{\frac{5}{2}} - 11 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^6/(1-2*x)^(5/2)/(3+5*x)^2,x, algorithm="maxima")

[Out]

-729/2000*(-2*x + 1)^(5/2) + 729/125*(-2*x + 1)^(3/2) + 203/45753125*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1
))/(sqrt(55) + 5*sqrt(-2*x + 1))) - 315171/5000*sqrt(-2*x + 1) - 1/19965000*(10084199952*(2*x - 1)^2 + 4841466
4375*x - 19758729375)/(5*(-2*x + 1)^(5/2) - 11*(-2*x + 1)^(3/2))

________________________________________________________________________________________

Fricas [A]  time = 1.38111, size = 332, normalized size = 2.37 \begin{align*} \frac{609 \, \sqrt{55}{\left (20 \, x^{3} - 8 \, x^{2} - 7 \, x + 3\right )} \log \left (\frac{5 \, x + \sqrt{55} \sqrt{-2 \, x + 1} - 8}{5 \, x + 3}\right ) - 55 \,{\left (72772425 \, x^{5} + 480298005 \, x^{4} + 2644064775 \, x^{3} - 3837745731 \, x^{2} - 1434109759 \, x + 1035652776\right )} \sqrt{-2 \, x + 1}}{137259375 \,{\left (20 \, x^{3} - 8 \, x^{2} - 7 \, x + 3\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^6/(1-2*x)^(5/2)/(3+5*x)^2,x, algorithm="fricas")

[Out]

1/137259375*(609*sqrt(55)*(20*x^3 - 8*x^2 - 7*x + 3)*log((5*x + sqrt(55)*sqrt(-2*x + 1) - 8)/(5*x + 3)) - 55*(
72772425*x^5 + 480298005*x^4 + 2644064775*x^3 - 3837745731*x^2 - 1434109759*x + 1035652776)*sqrt(-2*x + 1))/(2
0*x^3 - 8*x^2 - 7*x + 3)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**6/(1-2*x)**(5/2)/(3+5*x)**2,x)

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Giac [A]  time = 1.87171, size = 150, normalized size = 1.07 \begin{align*} -\frac{729}{2000} \,{\left (2 \, x - 1\right )}^{2} \sqrt{-2 \, x + 1} + \frac{729}{125} \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + \frac{203}{45753125} \, \sqrt{55} \log \left (\frac{{\left | -2 \, \sqrt{55} + 10 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{55} + 5 \, \sqrt{-2 \, x + 1}\right )}}\right ) - \frac{315171}{5000} \, \sqrt{-2 \, x + 1} - \frac{16807 \,{\left (768 \, x - 307\right )}}{63888 \,{\left (2 \, x - 1\right )} \sqrt{-2 \, x + 1}} - \frac{\sqrt{-2 \, x + 1}}{831875 \,{\left (5 \, x + 3\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^6/(1-2*x)^(5/2)/(3+5*x)^2,x, algorithm="giac")

[Out]

-729/2000*(2*x - 1)^2*sqrt(-2*x + 1) + 729/125*(-2*x + 1)^(3/2) + 203/45753125*sqrt(55)*log(1/2*abs(-2*sqrt(55
) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) - 315171/5000*sqrt(-2*x + 1) - 16807/63888*(768*x - 307)
/((2*x - 1)*sqrt(-2*x + 1)) - 1/831875*sqrt(-2*x + 1)/(5*x + 3)